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. INTRODUCTION

In analyzing the errors of guidance systems, JPL ex-
perience has indicated that the treatment of injection-
errors as independent random variables may soimetimes
be a poor approximation.Statistical calculations of disper-
sions at the destination, or of the magnitude of a mid-
course mancuver, must take into account cross-correlations
between injection errors; the appropriate theory is pre-
sented in this Memorandum,

The analysis hinges on the properties of multivariate
Gaussian distributions and linear perturbation theory.
Referring to the latter, the validity of the approximations
of first-order error analyses can only be confirmed by test-
ing the lincarity of relevant perturbations for each par-
ticular case. No-attempt has therefore been made to
formulate guide lines as to when first-order approxima-

tions are acceptable and when they are not. It is sufficient
to say that, in the cases analyzed to date at JPL, the
application of perturbation theory was amply justified.

The theory is presented with reference to the problem
of a single-stage guided rocket, after which consideration
is given to multi-stage ascents, satellite orbits, calcula-
tion of the average midcourse maneuver and of the dis-
persion at a destination in the absence of post-injection
guidance,

Section 11 provides the introduction of the appropriate
theory, with reference to a simple example, viz. the ascent
of a guided single-stage rocket. The extension to multi-
stage rockets and the calculation of the dispersion in
orbital parameters is then presented in Section 1L
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~II. THE STATISTICAL DESCRIPTION OF INJECTION ERRORS

Consider the case of a single-stage rocket the ascent of
which is controlled by some guidance system. It is not
necessary to specify what form of guidance but it may be
helpful to think of the guidance being as follows: the
attitude (and hence the thrust vector) of the vehicie is
slaved to a {gyro) reference direction which is pitched
over at some predetermnined rate. An accelerometer is
mounted with its sensitive axis along the axis of the
vehicle, and when the integrated outpat of the acceler-
ometer attains a certain value the rocket motor is shut off.
Without becoming involved in a detailed analysis of such
a guidance system, some sources of error may be men-
tioned.

a. The thrust axis may not be along the vehicle axis so
that, unknown to the autop “ot, the vehicle is forced to
fly on a trajectory which differs slightly from the standard.

b. Gyroscope drift (apart from the programmed pre-
cession) may also bring about nonstandard trajectories.

c. A null-shift in the accelerometer may lead to an
error in the computed axial velocity.

d. The rocket motor may develop more or less thrust
than the nominal value, with the result that the motor is
shut off with the right axial velocity but in the wrong
position, and so forth.

In nearly all cases which arise in practice, nonstandard
trajectories have two important characteristics: (1) the
source of error is a random quantity distributed approxi-
mately according to the Gaussian Law (e.g. accelerom-
eter null-shift)! and (2) the trajectories which are in
error differ only slightly from the standard, so that linear
perturbuation theory may be invoked to calculate such
deviations,

The effect of one error source is first examined and it
is assumed that, for each kind of error, the trajectory of
the vehicle can be computed either on a digital machine
or analytically. Let the error be 8¢, which may be thought
of as any one of the abovementioned errors, and let 8x,
3y, 8z, Su, 8¢, Sw be the resulting perturbations in posi-
tion and velocity at a fixed time after launch. The time is
chosen to be shortly after the standard burnout point
but sufficiently late so that, on perturbed trajectories.
burnout always occurs before the fixed time. To a first
order of approximation (perturbation theory):

'This theory is restricted to the important class of unpredictable
error-sources which are constant for one flight but which are ran-
dom variables when comparing one instrument or rocket motor to
another.

3x =a, 8¢

8y ==a, 8e
(1)

The a; coeflicients are calculated analyticaily or by intro-
ducing the error 8¢ in a computing program which simu-
lates (analog or digital) the vehicle, propulsion and
guidance systems.

The error 8¢ is a random variable in the ensemble gen-
erated by an infinite number of hypothetical ascents.
Furthermore, since 8¢ is normally distributed, so are the
six injection coordinates of Eq. (1)2 However, these co-
ordinates are not characterizec by six independent normal
distributions; instead they are described by a six-dimen-
sional joint distribution. Thus it is shown in statistical text
books (e.g., Cramér) that the probability of the injection
coordinates being between x and x + dx, y and y + dy,
cte., is

'———-:——x exp { —¥SXTM '8X }dxdy.. dw (2)

(2z) (IM])
where

8x
3y

5X = | %2 (3)
Su
8y
L 8w

and M is the moment matrix (covariance matrix) of the
six-dimensional distribution. Knowledge of M gives a
complete statistical description of the injection coordi-
nates. It is calculated as follows:

Put §X = A 8¢ (4)

where

Aathemat’cal Methods of Statistics, by H. Cramér, Princeton
University Press, 1957, page 313.
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then ,
SXEXT = A(8e)* AT (6)

The ensemble average is now taken of all terms in the
matrices on both sides of Eq. (6). TLis gives the moment
matrix of injection errors

M=38X8XT==A(8e)* AT (7)

Written out in full, the result is

3x? 3x8y .. Sx8w

83 57° ... ...
M==] ... ... ... ... .. pe——t) AAT (8)
Swéx ... ... Suw?

where o is the standard deviation of the error 3e. It will
Le seen that M is a symmetrical mat-ix; the diagonal
terms are the variances on the six injection errors and the
other terms are covariances. In order to introduce cross-
correlation coefficients it is sometimes convenient to write
equation (8) in the form

-
or? PryOs y' P2z 02 Ty .. Prw O Oy
2
ay PyzOy 0. ... ...

M =] (symmetric) . (8)

oo’

where o , is the rms injection error in x and p,, is the co-
efficient of cross-correlation between x and y, etc. The
coefficient p = =1 for perfectly correlated variables and
p = 0 for uncorrelated variables.

Crude analyses of guidance systems have often ignored
correlation effects, a poor approximation since some in-
jection variables are invariably heavily correlated, e.g.,
speed and height.

The calculation of the moment matrix is now general-
ized to include more than cne error source, e.g., acceler-
ometer null-shift, gyro drift, under or over-perforring
rocket motor. Let the errors due to n sources be 38¢;
(i =1, 2 ..n). Then, assuming that such errors perturb
the ascent trajectory only slightly, the injection error may
be written as linear combinations of the errors due to

each source.
Sx —a,, 8¢+ a,28e.+ .+ a,, Sen
3)’ =a; 8¢, + anzdes+ ...+ a3, Sen )

Sw=—a; 8¢ +a:8e:+ . +a.,les s
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In matrix notation, Eq. (9) is

38X = ASE (10)
where
[ 8e,
8e.
8E = : (11)
8e.

and A is the (6 X n) matrix

r-dll & ... .. i
42y di» R 1

A= ’ ) (12)
_"Gl dsz . - ... din

The 6n terms of the A matrix would again be computed
either analyticaily or by perturbing trajectories computed
on a machine. For n error-sources the A matrix could be
calculated by computing n trajectories.

Proviled that the error-sources are random quantities
with Gi-ussian distributions, the six injection-errors will
once more have a six-dimensional joint Gaussian distri-
bution defined by Eq. (2). The calculation of the mo-
ment matrix is now as follows:

From Eq. (10)

SXSXT == ASESETAT (13)
and by taking the ensemble average
M = §X8XT = ASESETAT (14)

The (n X n) symmetric matrix SESET ( = A) is the
moment matrix of the error-sources, but in nearly all
cases these can be considered as independent random
variables, e.g., gyro drift is independent of rocket motor
performances. In this case the matrix is diagonal:

r(Y]:O 0 0 - - 7
0 4,0 0.
2
- |00 0 (15)
2
. . . Tn_y 0
L 0 o ]

the n diagonal terms being the varianccs of the n error-
sources.

The moment matrix of the injection errors can there-
fore be written

MweAA AT (16)

where in most cases .\ is the diagonal matrix of Eq. (15).

3
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I1l. APPLICAVION TO SATELLITE AND SPACE MISSIONS

The procedure derived in Section I was developed
with a single-stage rocket in mind. The same method can,
however, be applied to multistage ascents and for caleu-
lating post-injection dispersions.

A. Injectio:: Errors of a Multistage Ascent

In a multistage ascent, errors at first burnout are propa-
gated through subsequent stages and mixed with errors
in those stages. A possible difficulty is that some, but not
all, of the errors developed in separate stages are corre-
lated. For example, although with separate rocket moiors
for cuch stage the performance of a motor is independent
of its predecessor, the drift in one certain gyroscope may
affect all stages in a similar manner.

Nevertheless, even with such complications, the com-
putation of the moment matrix of injection errors (burn-
out of the last stage) can be carried out in the fashion
eplained in the preceding section. Referring to Eq. (9)
and (10), the n error-sources include those in all stages,
although if one crror-source creates errors in more than
one stage it is counted only once (e.g., gyro drift in a
platform used for guiding all stages). The effect on in-
jection of a motor-performance variation in the first stage
would be computed by assuming ideal performance from
the motors and guidance systems of subsequent stages.
The effect on injection of a final-stage motor variation
would be computed assuming the standard ascent tra-
jectory up to the Jast stage. Tae effect of drift in a gyro-
scope common to all stages would be computed by
simulating that drift in all stages but assuming no other
error sources, and so on.

The formal calculation of the injection moment matrix
is therefore just the same as for the single-stage rocket
and Eq. (9) through (19) apply. Some numecrical ex-
amples of JPL analyses are included in Section III-C
below; such calculations included the effect a long coast
(20 minutes) between burnout of the second stage and
ignition of the third stage.

B. Dispersion of Earth-Satellite Orbital Parameters

Suppose that a satellite has been placed into orbit and,
by the methods discussed above, the moment matrix of
injection errors has been evaluated. The calculation of
the dispersion in the orbital parameters is now consid-
ered. The six parameters commonly employed are as
follows:

a ~= semi-major axis (or the period)
e = cccentricity

§ == inclination of the plane of the orbit to the
equatorial plane

Q = longitude of the node
w == argument of the perigce

a = mean anomaly at epoch

For highly eccentric orbits these parameters would be
acceptable, but for near-circular orbits, perturbations in
the eccentricity e are not linearly related to perturbations
in the injection coordinates ( e > 0, except for a circular
orbit where ¢ = 0). For this reason an alternative param-
eter is recommended, viz. the difference between the
apogee R, and perigee R,. By definition of these quan-
tities p = (R, — R,) is always positive but by taking

3

ﬁ (Rn—Rp)

(where X is an injection coordinate) the difficulty is

avoided®. Instead of eccentricity ¢, the parameter p ( ==
R, — R,) will therefore be used.

Assuming linear perturbation theory to be valid, the
six injection errors of Eq. (3) are lincarly related to
errors in the orbital parameters. Thus

82 1. 3x
ap 8)’
8i 8z
5@ | —C | & an
8w Sv
sa 8w

where the elements of the (6 X 6) matrix C may be cal-
culated analytically or by machiae. Presumably the (x,
y, =) axes would be chosen with x as the local vertical
and y in the horizontal and orbital planes.

The injection errors satisfy a six-dimensional normal
distribution and, since the errors in the orbital param-
cters arc linearly related to the injection errors, they will
also satisfy a six-dimensional normal distribution with the
following moment matrix:

‘JPL Internal Technical Memo No. 528, by W, Kizner.




3@ a5  Badi 8a50 dadw  Babs |
3¢ 8988 8,50 Bpbw  Bpla
3 380 i  Bila

= CMCT
t105 §Q80 5Q8a
(symmetric) $0? Swda
R 3a?
(18)

M being the moment matrix of injection crrors. Usually,
only the rns errors in the orbital parameters are of in-
terest, i.e., the diagonal terms of CMCT.

C. Calculation of the Average Midcourse Maneuver

If a midcourse maneuver is to be applied, the magni-
tude of the maneuver depends on the size and cross-
correlations of the injection errors. Given the guidance
systemn and the moment matrix of injection errors, it is
important to be able to estimate the required midcourse
maneuver. For a given midcourse point on a given tra-
jectory (lunar or interplanetary) it can be shown 'that,
to a first order of approximation, the three components
of the maneuver are given by

Ve _
v, | =k — K8X (19)
Ve 3y

Sw

where K is a (3 X 8) matrix consisting of elements com-
puted on the standard trajectory.
It follows that

Ve

Vy | (V.V,V.] = KsX8X"KT (20)
V.

and by taking the ensemble average

V. Ver VtV:
vV, Vi V., V.| =KMKT (21)
V:V: Vsz sz

where M is the moment matrix of injection errors. KMKT
is the moment matrix of the three-dimensional normal
distribution of the components V,, V,, V.. When KMK”
has been computed numerically the sum of the three
diagonal terms gives

‘Interplanetary Post-Injection Guidance, by A. R. M. Noton. JPL
External Publication No. 653, 1959, page 34.

ViV +Vi=(VAFVIFV  (22)

i.e., the mean-square value of the midcourse maneuver,.

For approximate analyses, it may be sufficient to know
the rms value of the manecuver; it may be reasoned that,
if a midcourse rocket can deliver three times the rms
value, then it can cope with a very high proportion of all
possible cases. However, although V,, V, and V, satisfy
a joint Gaussian distribution, the distribution of (V,f +4-
V,* 4+ V.2)" is not Gaussian. The calculation of the dis-
tribution function of the magnitude of the maneuver is
beyond the scope of this paper.

D. The Dispersion Ellipses at the Moon
or the Planets

In the ahsence of post-injection guidance the disper-
sion at the destination is a function of the choice of the
trajectory and the errors at injection. The dispersion may
be measured in terms of miss components on the surface
of the moon or miss components at the planets measured
in a plane perpendicular to the approach velocity vector.
Whatever the coordinates employed, the two components
of miss will be referred to as M, and M,.

From perturbation calculations on the standard tra-
jectory a U m..trix can be formed such that

M, ] —usx (23)
- H
U being a (2 X 6) matrix. Now
[ M2 MM,
LM;M] A‘gz

and, by takirﬂz_ the ensemble average,

] — UMUT (25)

] = USX3XTUT (24)

(M2 MM,
L MM, M2

i.e., the moment matrix of the two dimensional Gaussian
distribution for the two miss components. Put

b
uMuT = | ¢ 26
5 b] (26)
then
1 b —b
Tyt e &

(UMUT) = s [_b ‘] 27)
and the two-dimensional probability density function is -
(cf. Eq. 2):

—t
2x (sb—b) %
1
exp4q — m (bM,? — 2hM, M, -+ 4M:z)} (28)

-]
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It will be observed that contours of constant probability
are ellipses in the (M,, M:) plane,

bM,? — 2h M\M. + a M,? = constant (29)

It can be shown that, for such an ellipse having semi-
minor and semi-raajor axes kA, and k, respectively, where

- %
N=K(a+b) + Il:(‘ . ")’+b']

— 4
A2:=%(¢+b) _ [(3 2b)3+h2]

the probability of the miss being within such an ellipse is®

(30)

P=1—e¢"? (31)

(when k = 1, 2 and 8, P = 0.40, 0.86 and 0.99 respec-
tively.) These ellipses have the major axis inclined at an
angie 8 to the M, axis, where

6 = Ywan* Py (32)

As a numerical example, some results of JPL analyses
are quoted. It should be noted that the numbers do not
refer to an existing or anticipated guidance system. The
coordinates are defined in the sketch, the y-axis being the

STANDARD
INJECTION
POINT

*Prediction of Ballistic Missile Trajectories from Radar Observa-

tions, by 1. Shapiro, McGraw-Hill Book Co., 1958, page 87.

local vertical at the standard injection point. Table 1 pre-
sents the results for three slightly different guidance sys-
tems®; the table includes rms errors, cross-correlation co-
efficients (Eq. 8) as deduced from the moment matrix
of injection errors, and the parameters of the dispersion
ellipse.

Table 1. 66-hour lunar impact trajectory.

Group Parameter System 1 System 2 System 3

., # 15,900 13,700 13,500

oy 14,800 10,200 10,000

o™ o, 0/sec 15.6 17 ns

1eEtion 1 . millirad 0.733 0.515 0.508

errons ot 41,300 41,300 40,200

o, ft/sec 152 152 96

Prs —~0.715 ~0.902 —0.910

cross- Poe 0.794 0.917 0.916

correlation Y —-0.700 —0.823 —-0.829

coefficients Pre —0.490 ~0.969 —0.984

of injection Py 0.952 0.904 0.905

errors pey —0.481 -0.872 —0.887

P 0.753 0.753 0.934

0% semi-major 7.770 2,300 2,250

probobility | 9%is ™i- '

ellipse semi-minor 1,710 910 706
axis, mi.

Inspecticn of the table reveals that, if the guidance
system were judged merely on the basis of rms injection-
eirors, then System 3 would appear to be only a little
better than System 1. However, it will be observed that
the dispersion ellipse of System 3 has only 0.29 the length
of that of System 1. The relative accuracy of System 3
is mainly attributable to the high correlation cocfficients;
errors are tending to compensate for each other, e.g.,
height and speed are almost perfectly correlated in Sys-
tem 3. The effects of such correlations can be taken into -
account only by the procedures outlined in this Memo-
randum.

" From unpublished studies by C. G. Pfeiffer, A. Dickinson, and
C. E. Kohlhase.




